Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497155

RESUMO

The phenotypic plasticity of Cryptococcus neoformans is widely studied and demonstrated in vitro, but its influence on pathogenicity remains unclear. In this study, we investigated the dynamics of cryptococcal cell and transcriptional remodeling during pulmonary infection in a murine model. We showed that in Cryptococcus neoformans, cell size reduction (cell body ≤ 3 µm) is important for initial adaptation during infection. This change was associated with reproductive fitness and tissue invasion. Subsequently, the fungus develops mechanisms aimed at resistance to the host's immune response, which is determinant for virulence. We investigated the transcriptional changes involved in this cellular remodeling and found an upregulation of transcripts related to ribosome biogenesis at the beginning (6 h) of infection and a later (10 days) upregulation of transcripts involved in the inositol pathway, energy production, and the proteasome. Consistent with a role for the proteasome, we found that its inhibition delayed cell remodeling during infection with the H99 strain. Altogether, these results further our understanding of the infection biology of C. neoformans and provide perspectives to support therapeutic and diagnostic targets for cryptococcosis.


Assuntos
Criptococose , Cryptococcus neoformans , Camundongos , Animais , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Modelos Animais de Doenças , Criptococose/microbiologia , Virulência
2.
Front Microbiol ; 9: 132, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467743

RESUMO

The Cryptococcus gattii species complex harbors the main etiological agents of cryptococcosis in immunocompetent patients. C. gattii molecular type VGII predominates in the north and northeastern regions of Brazil, leading to high morbidity and mortality rates. C. gattii VGII isolates have a strong clinical relevance and phenotypic variations. These phenotypic variations among C. gattii species complex isolates suggest that some strains are more virulent than others, but little information is available related to the pathogenic properties of those strains. In this study, we analyzed some virulence determinants of C. gattii VGII strains (CG01, CG02, and CG03) isolated from patients in the state of Piauí, Brazil. The C. gattii R265 VGIIa strain, which was isolated from the Vancouver outbreak, differed from C. gattii CG01, CG02 and CG03 isolates (also classified as VGII) when analyzed the capsular dimensions, melanin production, urease activity, as well as the glucuronoxylomannan (GXM) secretion. Those differences directly reflected in their virulence potential. In addition, CG02 displayed higher virulence compared to R265 (VGIIa) strain in a cryptococcal murine model of infection. Lastly, we examined the genotypic diversity of these strains through Multilocus Sequence Type (MLST) and one new subtype was described for the CG02 isolate. This study confirms the presence and the phenotypic and genotypic diversity of highly virulent strains in the Northeast region of Brazil.

3.
Front Microbiol ; 8: 2534, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312225

RESUMO

Microbial biofilms are highly structured and dynamic communities in which phenotypic diversification allows microorganisms to adapt to different environments under distinct conditions. The environmentally ubiquitous pathogen Cryptococcus neoformans colonizes many niches of the human body and implanted medical devices in the form of biofilms, an important virulence factor. A new approach was used to characterize the underlying geometrical distribution of C. neoformans cells during the adhesion stage of biofilm formation. Geometrical aspects of adhered cells were calculated from the Delaunay triangulation and Voronoi diagram obtained from scanning electron microscopy images (SEM). A correlation between increased biofilm formation and higher ordering of the underlying cell distribution was found. Mature biofilm aggregates were analyzed by applying an adapted protocol developed for ultrastructure visualization of cryptococcal cells by SEM. Flower-like clusters consisting of cells embedded in a dense layer of extracellular matrix were observed as well as distinct levels of spatial organization: adhered cells, clusters of cells and community of clusters. The results add insights into yeast motility during the dispersion stage of biofilm formation. This study highlights the importance of cellular organization for biofilm growth and presents a novel application of the geometrical method of analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...